De Novo Mutations in DENR Disrupt Neuronal Development and Link Congenital Neurological Disorders to Faulty mRNA Translation Re-initiation
نویسندگان
چکیده
Disruptions to neuronal mRNA translation are hypothesized to underlie human neurodevelopmental syndromes. Notably, the mRNA translation re-initiation factor DENR is a regulator of eukaryotic translation and cell growth, but its mammalian functions are unknown. Here, we report that Denr influences the migration of murine cerebral cortical neurons in vivo with its binding partner Mcts1, whereas perturbations to Denr impair the long-term positioning, dendritic arborization, and dendritic spine characteristics of postnatal projection neurons. We characterized de novo missense mutations in DENR (p.C37Y and p.P121L) detected in two unrelated human subjects diagnosed with brain developmental disorder to find that each variant impairs the function of DENR in mRNA translation re-initiation and disrupts the migration and terminal branching of cortical neurons in different ways. Thus, our findings link human brain disorders to impaired mRNA translation re-initiation through perturbations in DENR (OMIM: 604550) function in neurons.
منابع مشابه
Perturbed proteostasis in autism spectrum disorders
Dynamic changes in synaptic strength rely on de novo protein synthesis and protein degradation by the ubiquitin proteasome system (UPS). Disruption of either of these cellular processes will result in significant impairments in synaptic plasticity and memory formation. Mutations in several genes encoding regulators of mRNA translation and members of the UPS have been associated with an increase...
متن کاملActivities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling.
Eukaryotic translation initiation begins with ribosomal recruitment of aminoacylated initiator tRNA (Met-tRNA(Met)(i)) by eukaryotic initiation factor eIF2. In cooperation with eIF3, eIF1, and eIF1A, Met-tRNA(Met)(i)/eIF2/GTP binds to 40S subunits yielding 43S preinitiation complexes that attach to the 5'-terminal region of mRNAs and then scan to the initiation codon to form 48S initiation comp...
متن کاملTime Course of Degradation and Deadenylation of Maternal c-mos and Cyclin A2 mRNA during Early Development of One-Cell Embryo in Mouse
Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributed to a change in the translational activity or stability of mRNA in the egg and early embryo. As a result, translational control is critical for a variety of developmental decisions, including oocyte maturation and initiation of preimplantation development. In this s...
متن کاملA human de novo mutation in MYH10 phenocopies the loss of function mutation in mice
We used whole exome sequence analysis to investigate a possible genetic etiology for a patient with the phenotype of intrauterine growth restriction, microcephaly, developmental delay, failure to thrive, congenital bilateral hip dysplasia, cerebral and cerebellar atrophy, hydrocephalus, and congenital diaphragmatic hernia (CDH). Whole exome sequencing identified a novel de novo c.2722G > T (p.E...
متن کاملPost-transcriptional control of the MCT-1-associated protein DENR/DRP by RNA-binding protein AUF1.
BACKGROUND There is often a poor correlation observed between protein and RNA in eukaryotic systems, supporting the emerging pardigm that many of the abnormalities in a cancer cell's proteome may be achieved by differential recruitment of mRNAs to polysomes referred to as the translational profile. The MCT-1 oncogene product has recently been shown to interact with the cap complex and to modula...
متن کامل